Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice.
نویسندگان
چکیده
In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport were observed: the smallest IOMNs (10 nm) showed the highest uptake by the liver, whereas the largest IOMNs (40 nm) showed the highest uptake by the spleen. Moreover, the IOMNs with the smallest size (10 nm) were cleared faster from the liver and kidneys, but more readily entered the brain and the uterus. IOMNs with the largest size (40 nm) accumulated more readily but were easily eliminated in the spleen. However, the level of iron in the heart decreased in all IOMN exposed groups. In addition, blood biochemistry, hematological analyses and histological examination demonstrated that there was no apparent acute toxicity caused by IOMNs in mice. However, smaller IOMNs (10 nm and 20 nm) more effectively changed the expression level of sensitive genes related to oxidant stress, iron transport, metabolic process, apoptosis, and others.
منابع مشابه
Investigation of the Synthesis of Chitosan Coated Iron Oxide Nanoparticles under Different Experimental Conditions
Iron oxide (Fe3O4) nanoparticles with average sizes of 10 nm were synthesized by a chemical coprecipitation method in the presence of chitosan. Chitosan as a natural polymer which can be extracted from crustaceans was used in the synthesis process in order to achieve more dispersed nanoparticles. Also, chitosan was used to obtain functionalized magnetic nanoparticles for using in different area...
متن کاملThe Effect of Magnetic Iron Oxide Nanoparticles on Mice Liver and Kidney
Background & Aims: In spite of frequent produce and use of magnetic nanoparticles in biological fields, there are few studies on their side effects, especially under in-vivo conditions. Method: In this research, the effect of the single-dose intraperitoneal injection of DMSA (dimercaptosuccinic acid) coated magnetic iron oxide nanoparticles (Fe3O4) in different doses (50, 100, 200 and 300 mg/kg...
متن کاملHistological Evaluation of the Fetus Lung in NMRI Mice after Exposure to Iron Oxide Nanoparticles: an in vitro Study
Background and Aim: Iron oxide nanoparticles are used in fields related to nanotechnology including ecology, magnetic storage, imaging and medicinal purposes. Iron nanoparticles produce reactive oxygen species (Ros). These materials are able to cross the placenta. The aim of this study was to investigate toxic effect of iron oxide nanoparticles on fetal lung in mice. <br ...
متن کاملEvaluation of Antibacterial Properties of Magnetic Iron Oxide Nanoparticles Synthesized using Echinops Persicus Extract Coated with Chloramphenicol
Introduction: The use of plants is one of the most effective methods for the synthesis of nanoparticles based on green chemistry. The magnetic properties of nanoparticles let the attached drugs conduct by a magnetic field in the body. This study aimed to use the magnetic iron oxide nanoparticles synthesized via green chemistry as a carrier for the chloramphenicol drug delivery system. Materi...
متن کاملMagnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation
In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2015